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Administritivia
Assignment 1 due tomorrow 
- Please bring your pinhole cameras to class on Thursday for “show and 

tell” :-) 

Assignment 2 available soon 
- back to programming 

- due next Wednesday 

Fill out poll to select paper for presentations 
(before class Thursday) 
- http://goo.gl/forms/Yfwp3ee5sW
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Today
Light & Color 
- Physics background 

- Color perception & measurement 

- Color reproduction 

- Color spaces
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What is light?

A form of electromagnetic (EM) radiation 
- like x-rays, microwaves, radio waves, etc 

- characterized by wavelength 

- amplitude determines intensity 

We perceive a limited section of the spectrum as “visible” light
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What is light?

5

Wavelength 
1nm=10-9 meters, 

one-billionth of a meter 
 

speed of light = wavelength * frequency



Light transport: Geometric optics
Simplified model 
- http://en.wikipedia.org/wiki/Geometrical_optics 

Roughly speaking 
- Light is transported along straight rays 

- When light interacts with material, it may be reflected or 
refracted 

Can model most effects that are important for our daily 
experience
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Light transport: Geometric optics
Rays carry a spectrum of electromagnetic energy 
- An “energy distribution”
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Spectral distribution of light
Light can be a mixture of many 
wavelengths 
- each with some intensity 

- represented by continuous function 

• s(λ) = intensity at wavelength λ 

- spectral power distribution (SPD): intensity as 
a function of wavelength over enter spectrum 

We perceive these distributions as colors
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Where spectra come from: 
- light source spectrum 

- object reflectance (aka spectral albedo) 

- multiplied wavelength by wavelength 

There are different physical processes that explain this 
multiplication e.g. absorption, interferences

Light-matter interaction

× =
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What is color?
Colors are the sensations that arise from light energy 
with different wavelength distributions 
Color is a phenomenon of human perception; it is not a 
universal property of light 
Roughly speaking, things appear “colored” when they 
depend on wavelength and “gray” when they do not 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The problem of color science
Build a model for human color perception 
That is, map a physical light description to a perceptual 
color sensation  
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Physical Perceptual

?



Today
Light & Color 
- Physics background 

- Color perception & measurement 

- Color reproduction 

- Color spaces
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We can model the low-level behavior of the 
eye by thinking of it as a light-measuring 
machine 
- optics are much like a camera 

- its detection mechanism is also much  
like a camera 

Lens focuses light on retina 
- cells in retina respond to light 

- different types respond to different wavelengths

The eye as a measurement device
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Retinal composition: two kinds of cells
Cones are concentrated in fovea 
- high acuity, require more light 

- “respond to color” 

Rods concentrated outside fovea 
- lower acuity, require less light 

- roughly 10x more sensitive 

- “respond to intensity only”
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A simple light detector
Produces a scalar value (a number) when photons land on it 
- this value depends strictly on the number of photons detected 

- each photon has a probability of being detected that depends on the 
wavelength 

- there is no way to tell the difference between signals caused by light 
of different wavelengths: there is just a number 

This is a reasonable model for many detectors: 
- based on semiconductors (such as in a digital camera) 

- based on visual photopigments (such as in human eyes) 
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A simple light detector
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n(l)

p(l)

X =
Z

n(l)p(l)dl

After a slide by Steve Marschner



Light detection math
Same math carries over to spectral distributions 
- spectrum entering the detector has its spectral power 

distribution (SPD), s(λ)  

- detector has its spectral sensitivity or spectral response, r(λ)
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X =
Z

s(l) r(l)dl

measured signal
input spectrum

detector’s sensitivity
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Three types of cones with broadband spectral 
sensitivity 
- S cones respond to short-wavelengths (“blue”) 
- M cones respond to medium-wavelengths (“green”) 
- L cones respond to long-wavelengths (“red”) 
- Experimentally determined in the 1980s [link] 

S,M,L neural response is integrated w.r.t. λ  
- we’ll call the response functions rS, rM, rL  
Results in a trichromatic visual system 
S, M, and L are tristimulus values

Cone responses
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Cone responses to a spectrum s (Math)
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M =
Z

rM(l) s(l)dl = rM · s

S =
Z

rS(l) s(l)dl = rS · s

L =
Z

rL(l) s(l)dl = rL · s

After a slide by Steve Marschner



Stimulus  
(arbitrary spectrum)

Response curves

Multiply

Integrate
1 number 1 number 1 number

Start with infinite 
number of values  

(one per wavelength)

End up with 3 values 
(one per cone type)



Discrete representation of cones and input spectrum as 
vectors

Linear algebra interpretation
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InputL M S

After a slide by Matthias Zwicker



Linear algebra interpretation
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cone sensitivities

InputL M S
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Linear algebra interpretation
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*

cone sensitivities

input spectrum

InputL M S

After a slide by Matthias Zwicker



Tristimulus response is a 
matrix-vector multiplication 
Integration is now 
summation

Linear algebra interpretation
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*

cone sensitivities

input spectrum

tristimulus 
response

=

InputL M S

After a slide by Matthias Zwicker



Cone responses to a spectrum s

rS, rM and rL are N-dimensional vectors, where N  =  ∞
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M =
Z

rM(l) s(l)dl = rM · s

S =
Z

rS(l) s(l)dl = rS · s

L =
Z

rL(l) s(l)dl = rL · s
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Integral notation: Matrix notation:



Colorimetry: an answer to the problem
Wanted to map a physical light description to a perceptual color sensation 
Basic solution was known and standardized by 1930 
- Though not quite in this form — more on that later 
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Physical Perceptual

S = rS · s
M = rM · s
L = rL · s



Luminance 
- the overall magnitude of the the visual response to a spectrum 

(independent of its color) 

• corresponds to the everyday concept “brightness” 

- determined by product of SPD with the luminous efficiency function 
Vλ that describes the eye’s overall ability to  
detect light at each wavelength 

- e.g. lamps are optimized to improve their luminous  
efficiency  
(tungsten vs. fluorescent vs. sodium vapor)

Basic colorimetric concepts
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Y: just another response curve (like S, M, and L) 

- rY is really called Vλ  

Vλ is a linear combination of S, M, and L 
- has to be, since it’s derived from cone outputs

Luminance, mathematically
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Y = rY · s

After a slide by Steve Marschner



More basic colorimetric concepts
Chromaticity 
- what’s left after luminance is factored out (the color without 

regard for overall brightness) 

- scaling a spectrum up or down leaves chromaticity alone
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A cone does not “see” colors
Different wavelength, different intensity 
Same response
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M

After a slide by Frédo Durand



Response comparison
Different wavelength, different intensity  
But different response for different cones
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MS L

After a slide by Frédo Durand



Color blindness



Color blindness
Classical case: 1 type of cone is missing (e.g. L)  
Makes it impossible to distinguish some spectra

CS 89/189: Computational Photography, Fall 2015 33

differentiated same responses

After a slide by Frédo Durand



Color blindness — more general
8% male, 0.6% female 
Genetic 
Dichromate (strong color blind) — 2% male 
- One type of cone missing 

- L (protanope), M (deuteranope), S (tritanope) 

Anomalous trichromat (weak color blind) 
- Shifted sensitivity 

More at, e.g. http://en.wikipedia.org/wiki/Color_blindness
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Color blindness test
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Color blindness test
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Color blindness test
Maze in subtle intensity contrast 
Visible only to color blinds 
Color contrast overrides intensity otherwise

CS 89/189: Computational Photography, Fall 2015 37After a slide by Frédo Durand





Questions?
Links: 
- Vischeck shows you what an image looks like to someone 

who is colorblind
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http://www.vischeck.com/vischeck/


Metamers



Metamers
We are all color blind! 
These two different spectra elicit the 
same cone responses 
Called metamers
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Basic fact of colorimetry
Take a spectrum (which is a function) 
Eye produces three numbers 
This throws away a lot of information! 
- Quite possible to have two different spectra that have the 

same S, M, L tristimulus values 

- Two such spectra are metamers
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Pseudo-geometric interpretation
A dot product is a projection 
Humans project an infinite dimensional vector (the SPD) onto a 
3-D subspace 
- differences that are perpendicular to all 3 vectors are not detectable 

For intuition, we can imagine a 3D analog 
- 3D stands in for the infinite-dimensional vectors 

- 2D stands in for 3D 

- Then color perception is just projection onto a plane
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Pseudo-geometric interpretation
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The information available to the visual system about a 
spectrum is just 3 numbers! 
Two spectra that project to the 
same response are metamers

After a slide by Steve Marschner



Metamers
Which stimuli are metamers?
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There is an infinity of metamers
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Good news: color reproduction
3 primaries are (to a first order) 
enough to reproduce all colors!
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Metamerism & light sources
Metamers under a given light source 
May not be metamers under a different lamp
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Illuminant metamerism example
Two grey patches in Billmeyer & Saltzman’s book look the 
same under daylight but different under neon or halogen
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Daylight Scan (neon) Hallogen

After a slide by Frédo Durand



Bad consequence: cloth matching
Clothes appear to match in store (e.g. under fluorescent) 
Don’t match outdoors
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The sun (a “blackbody”)
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Atomic Emission
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Emission spectrum of Hydrogen

Emission spectrum of Iron
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Sodium Vapor Lights
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Light emitted at 589nm and 589.6nm



Recap
Spectrum is an infinity of numbers 
Projected to 3D cone-response space 
- for each cone, multiply per wavelength and integrate 

- a.k.a. dot product 

Metamerism: infinite-D points projected to the same 3D point 
(different spectrum, same perceived color) 
- affected by illuminant 

- enables color reproduction with only 3 primaries
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Color perception in the animal kingdom
Humans project s(λ) into a 3D subspace 
- Some people (only women) are tetrachromats (4 types of cones)! 

Most mammals have 2 types of cones  
(2D subspace) 
Many birds have UV receptors, some 
can see magnetic fields 
Some animals have even more: 
- Mantis Shrimp use an 8D subspace!
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Today
Light & Color 
- Physics background 

- Color perception & measurement 

- Color reproduction 

- Color spaces
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Analysis & Synthesis
We want to measure & reproduce color as seen by 
humans 
No need for full spectrum! 
Only need to match up to metamerism
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Additive color
We will focus on additive color
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Analysis & Synthesis
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We’ll use 3 primaries (e.g. red, green, 
and blue) to match all colors 
- What should those primaries be? 

- How do we tell the amount of each primary needed to 
reproduce a given target color?

After a slide by Frédo Durand



Additive Synthesis (the wrong way!)
Take a given stimulus and the corresponding responses 
S, M, L (here 0.5, 0, 0)
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MS L

After a slide by Frédo Durand



Use it to scale the cone spectra (here 0.5 * S) 
You don’t get the same cone response!  
(here 0.5, 0.1, 0.1)

Additive Synthesis (the wrong way!)
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MS L

After a slide by Frédo Durand



The three cone responses are not orthogonal 
i.e. they overlap and “pollute” each other

What’s going on?
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MS L

After a slide by Frédo Durand



Same as non-orthogonal bases
Non-orthogonal bases are harder to handle 
Can’t use dot product on same vector to infer 
coordinates 
- Same problem as with cones, the i & j 

components pollute each other
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j

i

x  ≠  (x·∙i)  i  +  (x·∙j)  j

x
(x·∙i)  i  +  (x·∙j)  j
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Same as non-orthogonal bases
Non-orthogonal bases are harder to handle 
Can’t use dot product on same vector to infer 
coordinates 
Need a so-called dual basis 
- Same for color: different basis for 

analysis/synthesis
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^

^

(x·∙i)  i  +  (x·∙j)  j^^

j

i

x

Note that i has negative coordinates^
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Warning: tricky thing with color
Spectrum for the stimulus / synthesis  
- Light, monitor, reflectance 

Response curve for receptor / analysis 
- Cones, camera, scanner 

Usually not the same 
Because cone responses are not orthogonal
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Color reproduction (the right way)
Have a spectrum s; want to match on RGB monitor 
- “match” means it looks the same 

- any spectrum that projects to the same point in the visual 
color space is a good reproduction 

So, we want to find a spectrum that the monitor can 
produce that matches s 
- that is, we want to display a metamer of s on the screen
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LCD display primaries
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Curves determined by (fluorescent or LED) backlight and filters

After a slide by Steve Marschner
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Additive color
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We want to compute the combination of R, G, B that will 
project to the same visual response as s

Color reproduction (the right way)
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The projection onto the three response functions can be 
written in matrix form: 

or,
E = MSML s

Color reproduction as linear algebra
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The spectrum that is produced by the monitor for the 
color signals R, G, and B is: 

Again, the discrete form can be written as a matrix: 

or,

2

4
|

sa
|

3

5 =

2

4
| | |

sR sG sB
| | |

3

5

2

4
R
G
B

3

5

sa = MRGB C

Color reproduction as linear algebra
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sa(l) = R sR(l) + G sG(l) + B sB(l)
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What color do we see when we look at the display? 
- Feed C to display

Color reproduction as linear algebra

CS 89/189: Computational Photography, Fall 2015 74

E = MSML MRGB C

After a slide by Steve Marschner



What color do we see when we look at the display? 
- Feed C to display 

- Display produces sa

Color reproduction as linear algebra
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E = MSML MRGB C

After a slide by Steve Marschner



What color do we see when we look at the display? 
- Feed C to display 

- Display produces sa 

- Eye looks at sa and produces E

Color reproduction as linear algebra
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Goal of reproduction: visual response to s and sa is the 
same: 

Substitute in expression for sa  ,

Color reproduction as linear algebra
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MSML s = MSML sa

MSML s = MSML MRGB C

C = (MSML MRGB)
�1MSML s

color matching matrix for RGB
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Color reproduction recap
We now know how to match any color from the real 
world on a display 
We don’t need to know the whole spectrum, only the 
projections onto S, M, and L response functions 
There is then a simple linear procedure to work out the 
combination of any 3 primaries to match the color 
But there is a catch. More on that later.
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Summary
Physical color 
- Spectrum 

- multiplication of light & reflectance 
spectrum 

Perceptual color 
- Cone spectral response: 3 numbers  

- Metamers: different spectrum, 
same responses 

• Color matching, enables color 
reproduction with 3 primaries 

Fundamental difficulty 
- Spectra are infinite-dimensional 

(full function) 

- Projected to only 3 types of cones 

- Cone responses overlap / they are 
non-orthogonal 

• Means different primaries for 
analysis and synthesis 

- Negative numbers are not physical
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Today
Light & Color 
- Physics background 

- Color perception & measurement 

- Color reproduction 

- Color spaces
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Color spaces
How can we quantitatively represent, reproduce color? 
Brute force: store, reproduce full spectral energy 
distribution 
- Disadvantages?
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Color spaces
Representation should be complete, but as compact as 
possible 
- Any pair of colors that can be distinguished by humans 

should have two different representations 

- Any pair of colors that appears the same to humans should 
have the same representation
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Standard color spaces
We need a principled color space 
Three types of cones, so expect three parameters to be sufficient 
Many possible definitions 
- Including cone response (SML) 

- Unfortunately not really used (unknown when colorimetry was invented) 

Good news: color vision is linear and 3-dimensional, so any new 
color space based on color matching can be obtained using 3x3 
matrix  
- but there are also non-linear color spaces (e.g. Hue Saturation Value, Lab)
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Overview
Most standard color space: CIE XYZ 
SML and the various flavors of RGB are just linear 
transformations of the XYZ basis 
- 3x3 matrices
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Why not measure cone sensitivity?
Less directly measurable 
- electrode in photoreceptor? 

- not available when color spaces were defined 

Most directly available measurement:  
- notion of metamers & color matching 

- directly in terms of color reproduction:  
given an input color, how to reproduce it with 3 primary colors? 

- CIE: Commission Internationale de l’Eclairage 
(International Lighting Commission) 

- Circa 1920
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CIE color matching experiment
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Separating plane

Given an input color, how to reproduce it with 3 primary colors? 
(Idea by Maxwell) 

After a slide by Frédo Durand



CIE color matching experiment
Primaries (synthesis) at 435.8, 546.1 and 700nm  
- Chosen for robust reproduction, good separation in red-green 

- Don’t worry, we’ll be able to convert it to any other set of 
primaries (Linear algebra to the rescue!) 

Resulting 3 weights for each primary are called tristimulus 
values
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Applet
http://graphics.stanford.edu/courses/cs178-10/applets/colormatching.html
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CIE color matching
Meaning of these curves: a monochromatic wavelength 
λ can be reproduced with:  
   b(λ) amount of the 435.8nm primary, 
+g(λ) amount of the 546.1 primary, 
+r(λ) amount of the 700 nm primary 
This fully specifies the color  
perceived by a human
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Negative matching values?
Negative light doesn’t exist, so what do these mean? 
Some spectral colors could not be matched 
by primaries in the experiment 
The “Trick”: 
- One primary could be added to the source 

- Match with the remaining two 

- Weight of primary added to the source is 
considered negative 

But negative light is…inconvenient
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CIE color spaces
CIE was not satisfied with range of RGB values for visible 
colors 
- Negative tristimulus values 

Defined CIE XYZ color space via simple mathematical 
transformation 
- http://en.wikipedia.org/wiki/

CIE_1931_color_space#Definition_of_the_CIE_XYZ_color_space 

Most common color space still today
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CIE XYZ color space
Infinitely many ways to obtain non-negative matching functions! 
Let’s call ours XYZ 
- Y measures brightness or luminance 

- Set white to XYZ=(1/3,1/3,1/3) 

- imaginary primaries “supersaturated” 

Linear transformation of CIE RGB
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CIE RGBCIE XYZ



XYZ to RGB & back
sRGB to XYZ 

Adobe RGB to XYZ 

NTSC RGB to XYZ 

XYZ to sRGB 

XYZ to Adobe RGB 

XYZ to NTSC RGB
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  0.412424      0.212656          0.0193324      
  0.357579      0.715158          0.119193        
  0.180464      0.0721856      0.950444

3.24071        -‐‑0.969258        0.0556352      
-‐‑1.53726          1.87599        -‐‑0.203996        
-‐‑0.498571        0.0415557      1.05707  

0.576700        0.297361        0.0270328      
  0.185556        0.627355        0.0706879      
  0.188212        0.0752847      0.991248

2.04148        -‐‑0.969258        0.0134455      
-‐‑0.564977        1.87599        -‐‑0.118373        
-‐‑0.344713        0.0415557      1.01527  

0.606734        0.298839        0.000000        
  0.173564        0.586811        0.0661196      
  0.200112        0.114350        1.11491  

1.91049        -‐‑0.984310        0.0583744      
-‐‑0.532592        1.99845        -‐‑0.118518        
-‐‑0.288284      -‐‑0.0282980      0.898611

http://www.brucelindbloom.com/index.html?Eqn_RGB_XYZ_Matrix.html

http://www.brucelindbloom.com/index.html?Eqn_RGB_XYZ_Matrix.html


CIE color matching Recap
CIE performed color matching experiments 
- chose primaries for reproduction (synthesis) 

- for each wavelength, how much of each primary do we need 

• 3 analysis curves 

- Then a little bit of linear algebra to make everything positive 

• 3 new analysis curves 

Gives us XYZ color space 
Linear transform to/from LMS, RGB
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CIE XYZ Recap
The most widely recognized color space 
Y corresponds to brightness (1924 CIE standard  
photometric observer) 
No negative values in matching curves 
But no physically-realizable primary  
(negative values in primary rather 
than in matching curve)
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Chromaticity 
Diagram



CIE XYZ color cone
3D spaces can be hard to visualize 
Chrominance is our notion of color, as opposed to 
brightness/luminance 
Recall that our eyes correct for 
multiplicative scale factors 
- discount light intensity
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The CIE xyY Color Space
Chromaticity (x,y) can be derived by normalizing the XYZ 
color components: 

- (x,y) characterize color 

- Y characterizes brightness 

Combining xy with Y allows us to represent any color 
Plotting on xy plane allows us to see all colors of a single 
brightness

CS 89/189: Computational Photography, Fall 2015 98

x =
X

X + Y + Z

y =
Y

X + Y + Z



CIE Chromaticity Chart
Spectral colors along curved 
boundary 
Linear combination of two 
colors: line connecting two 
points 
Linear combination of 3 colors 
span a triangle (Color Gamut)
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CIE RGB Color Space
Color primaries at: 435.8, 546.1, 
700.0 nm
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Color Gamuts
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Chromaticity Diagrams

Can normalize XYZ colors

• these are chromaticity values
• we’ve factored out luminance

Can plot (x,y) for all colors
• chromaticity diagrams
• all colors realizable by a 

certain device is its gamut
• always falls within XYZ gamut

X
x
X Y Z
Y

y
X Y Z

=
+ +

=
+ +



CIE Chromaticity Chart Features
White Point 
Dominant wavelength 
Inverse color
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Perceptually-Uniform Color Spaces
All these color spaces so far are perceptually non-
uniform: 
- two colors close together in space are not necessarily 

visually similar 

- two colors far apart and not necessarily very different! 

Measuring “perceptual distance” in color spaces 
important for many industries 
Experiments by MacAdams
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MacAdams Color Ellipses
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Test patches



CIELab and CIELuv Color Spaces
Two attempts to make a perceptually-uniform color 
space 
MacAdams ellipses become nearly (but not perfectly) 
circular
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Higher-level color 
perception



Higher-level color perception
Color perception is much more complicated than 
response of SML cones… 
Visual pathway 
- A lot happens after the cones 

- But: cone responses are input to further processing 
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Color constancy
Also known as chromatic adaptation 
Color of object is perceived as the same even under 
varying illumination 
For example: 
- A white sheet of paper under green illumination is still 

perceived as white, even though the reflected light is green! 
The human brain infers the white color from the context, 
which is “green-ish“ too because of the green illumination.
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blue and black? 

or 

white and gold?



Color constancy failure

http://xkcd.com/1492/



Hering’s opponent process theory (1874)
After sensing by cones, colors are encoded as red 
versus green, blue versus yellow, and black versus white 
Physiological evidence found in the 1950s
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Dual process theory
Input is LMS 
Output has a different parameterization: 
- Light-dark 

- Blue-yellow 

- Red-green
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Color opponents wiring
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Sums for brightness 
Differences for color 
opponents 
At the end, it’s just a 3x3 
matrix compared to LMS







Image Afterimage

Opponent Colors







Opponent color spaces
Luminance, red-green, blue-yellow 
CIELab 
YUV 

YcrCb 
- used a lot in image/video compression
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YUV YCrCb
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